Published Evidence

There are more than 250 peer-reviewed publications reporting studies that involve the use of Vision RT’s technology for SGRT. These span a wide range of indications from brain to breast to sarcoma. In addition, Vision RT supports the SGRT Community, an organization dedicated to education on SGRT by users, for users, which holds biannual meetings and communicates through a dedicated website.  Vision RT’s educational funding has been diverted to the SGRT Community since 2016.

Vision RT technology has been widely researched by numerous users including the some of the most respected centers in radiation oncology. Below you can find a list of the journal papers and conference proceedings that detail the use of the technology. Click on the links to view abstracts and full papers where available Use the menu directly below to see the publications listed and organized by treatment site.

Indications

  • Rudat, V., Shi, Y., Zhao, R., Xu, S. and Yu, W. (2023). Setup accuracy and margins for surface-guided radiotherapy (SGRT) of head, thorax, abdomen, and pelvic target volumes. Scientific Reports, [online] 13(1), p.17018. doi:https://doi.org/10.1038/s41598-023-44320-2.
    ABSTRACT AVAILABLE
  • Qubala A, et al. (2023) Comparative evaluation of a surface-based respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms, Journal of Applied Clinical Medical Physics.
    ABSTRACT AVAILABLE
  • Sasaki, Makoto, et al. (2023) “New Patient Setup Procedure Using Surface-Guided Imaging to Reduce Body Touch and Skin Marks in Whole-Breast Irradiation during the COVID-19 Pandemic.” Radiological Physics and Technology
    ABSTRACT AVAILABLE
  • Jursinic, Paul; Jordan, Karl; Chen, Chen (2022): Positions of radiation isocenter and the couch rotation center established by Winston-Lutz and optical measurements. In Technical innovations & patient support in radiation oncology 21, pp. 46–50. DOI: 10.1016/j.tipsro.2022.01.004.
    ACCESS PAPER
  • Mueller, B., Song, Y., Chia-Ko, W., Hsu, H.-Y., Zhai, X., Tamas, P., Powell, S., Cahlon, O., McCormick, B., Khan, A., Gillespie, E., Cervino, L., Zhao, B., Hong, L. and Braunstein, L.Z. (2023). Accuracy and Efficiency of Patient Setup Using Surface Imaging versus Skin Tattoos for Accelerated Partial Breast Irradiation. Advances in Radiation Oncology, [online] 8(3). doi:https://doi.org/10.1016/j.adro.2023.101183.
    ACCESS PAPER
  • Song, Y., Zhai, X., Liang, Y., Zeng, C., Mueller, B. and Li, G. (2022). Evidence‐based region of interest (ROI) definition for surface‐guided radiotherapy (SGRT) of abdominal cancers using deep‐inspiration breath‐hold (DIBH). Journal of Applied Clinical Medical Physics, 23(11). doi:https://doi.org/10.1002/acm2.13748.
    ACCESS PAPER
  • Al-Hallaq, H., Batista, V., Kügele, M., Ford, E., Viscariello, N. and Meyer, J. (2021). The role of surface-guided radiation therapy for improving patient safety. Radiotherapy and Oncology, 163, pp.229–236. doi:https://doi.org/10.1016/j.radonc.2021.08.008.
    ACCESS PAPER
  • Shun Zhou, et al. (2021). “Development and Longitudinal Analysis of Plan-Based Streamlined Quality Assurance on Multiple Positioning Guidance Systems With Single Phantom Setup”
    ACCESS PAPER
  • Blake, N., Pereira, L., Eaton, D.J. and Dobson, D. (2021). Surface-guided radiotherapy for lung cancer can reduce the number of close patient contacts without compromising initial setup accuracy. Technical Innovations & Patient Support in Radiation Oncology, 20, pp.61–63. doi:https://doi.org/10.1016/j.tipsro.2021.11.005.
    ABSTRACT  AVAILABLE 
  • Covington, Elizabeth L et al. “Surface guided imaging during stereotactic radiosurgery with automated delivery.” Journal of applied clinical medical physics vol. 21,12 (2020): 90-95. doi:10.1002/acm2.13066
    ACCESS PAPER
  • Rigley, J., Robertson, P. and Scattergood, L. (2020). Radiotherapy without tattoos: Could this work? Radiography, 26(4), pp.288–293. doi:https://doi.org/10.1016/j.radi.2020.02.008.
    ABSTRACT AVAILABLE 
  • Kang, H.; Patel, R.; Roeske, J. C. (2019): Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. In J Appl Clin Med Phys 20 (10), pp. 127–133. DOI: 10.1002/acm2.12723.
    ABSTRACT AVAILABLE 
  • Wiant D, et al. (2019). “Direct comparison between surface imaging and orthogonal radiographic imaging for SRS localization in phantom.”
    ABSTRACT AVAILABLE
  • Tang X, et al. (2014). Clinical experience with 3-dimensional surface matching-based deep inspiration breath hold for left-sided breast cancer radiation therapy.
    ABSTRACT AVAILABLE 
  • Gopan, O., et al. (2012). “Evaluation of the accuracy of a 3D surface imaging system for patient setup in head and neck cancer radiotherapy.”
    ABSTRACT AVAILABLE
  • Rudat, V., Shi, Y., Zhao, R. and Yu, W. (2024). Setup margins based on the inter‐ and intrafractional setup error of left‐sided breast cancer radiotherapy using deep inspiration breath‐hold technique (DIBH) and surface guided radiotherapy (SGRT). Journal of Applied Clinical Medical Physics. doi:https://doi.org/10.1002/acm2.14271.
  • Naidoo, W. and Leech, M. (2022). Feasibility of surface guided radiotherapy for patient positioning in breast radiotherapy versus conventional tattoo-based setups- a systematic review. Technical Innovations & Patient Support in Radiation Oncology, 22, pp.39–49. doi:https://doi.org/10.1016/j.tipsro.2022.03.001.
  • Sorgato, V., Ghazouani, K., Queffelec, Y., Julia, F., Clement, S., Fric, D. and Farah, J. (2022). Benchmarking the AlignRT surface deformation module for the early detection and quantification of oedema in breast cancer radiotherapy. Technical Innovations & Patient Support in Radiation Oncology, [online] 21, pp.16–22. doi:https://doi.org/10.1016/j.tipsro.2021.12.002.
  • Beer, K.T. (2022). Introduction of SGRT in clinical practice. Technical Innovations and Patient Support in Radiation Oncology, [online] 21, pp.27–30. doi:https://doi.org/10.1016/j.tipsro.2022.01.003.
  • Lu, W., Li, G., Hong, L., Yorke, E., Tang, X., Mechalakos, J.G., Zhang, P., Cerviño, L.I., Powell, S. and Berry, S.L. (2022). Reproducibility of chestwall and heart position using surface‐guided versus RPM‐guided DIBH radiotherapy for left breast cancer. Journal of Applied Clinical Medical Physics. doi:https://doi.org/10.1002/acm2.13755.
  • Sauer, T., Ott, O.J., Lahmer, G., Fietkau, R. and Bert, C. (2021). Region of interest optimization for surface guided radiation therapy of breast cancer. Journal of Applied Clinical Medical Physics, 22(10), pp.152–160. doi:https://doi.org/10.1002/acm2.13410
  • González-Sanchis, A., Brualla-González, L., Fuster-Diana, C., Gordo-Partearroyo, J.C., Piñeiro-Vidal, T., García-Hernandez, T. and López-Torrecilla, J.L. (2021). Surface-guided radiation therapy for breast cancer: more precise positioning. Clinical and Translational Oncology. doi:https://doi.org/10.1007/s12094-021-02617-6.
  • Cravo Sá, A., Fermento, A., Neves, D., Ferreira, S., Silva, T., Marques Coelho, C., Vaandering, A., Roma, A., Quaresma, S. and Bonnarens, E. (2018). Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience. Reports of Practical Oncology & Radiotherapy, [online] 23(1), pp.61–67. doi:https://doi.org/10.1016/j.rpor.2017.12.007.
  • O’ Connor, M. and Sansourekidou, P. (2014). SU-E-J-16: A Review of the Magnitude of Patient Imaging Shifts in Relation to Departmental Policy Changes. Medical Physics, 41(6Part6), pp.158–158. doi:https://doi.org/10.1118/1.4888067.
  • Padilla, L., Kang, H., Washington, M., Hasan, Y., Chmura, S.J. and Al-Hallaq, H. (2014). Assessment of interfractional variation of the breast surface following conventional patient positioning for whole-breast radiotherapy. Journal of Applied Clinical Medical Physics, [online] 15(5), p.4921. doi:https://doi.org/10.1120/jacmp.v15i5.4921.
  • Shah, A.P., Dvorak, T., Curry, M.S., Buchholz, D.J. and Meeks, S.L. (2013). Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging. Practical Radiation Oncology, [online] 3(1), pp.16–25. doi:https://doi.org/10.1016/j.prro.2012.03.002.
  • Wiant, D., Pursley, J. and Sintay, B. (2012). SU-D-213CD-02: The Accuracy of AlignRT Guided Set-Up for Whole Breast and Chestwall Irradiation. Medical Physics, 39(6Part3), pp.3617–3618. doi:https://doi.org/10.1118/1.4734687.
  • Chang, A.J., Zhao, H., Wahab, S.H., Moore, K., Taylor, M., Zoberi, I., Powell, S.N. and Klein, E.E. (2012). Video surface image guidance for external beam partial breast irradiation. Practical Radiation Oncology, 2(2), pp.97–105. doi:https://doi.org/10.1016/j.prro.2011.06.013.
  • Deantonio, L., Masini, L., Loi, G., Gambaro, G., Bolchini, C. and Krengli, M. (2011). Detection of setup uncertainties with 3D surface registration system for conformal radiotherapy of breast cancer. Reports of Practical Oncology & Radiotherapy, 16(3), pp.77–81. doi:https://doi.org/10.1016/j.rpor.2011.02.003.
  • Miller, D. et al., 2008. Inter-fraction and Intra-fraction Breast Motion Localized using AlignRT for Early Breast Cancer. Int J Radiat Oncol Biol Phys 2008;72(1):S189-S190.DOI:https://doi.org/10.1016/j.ijrobp.2008.06.764
    ACCESS PAPER
  • Gierga, D.P., Riboldi, M., Turcotte, J.C., Sharp, G.C., Jiang, S.B., Taghian, A.G. and Chen, G.T.Y. (2008). Comparison of target registration errors for multiple image-guided techniques in accelerated partial breast irradiation. International Journal of Radiation Oncology, Biology, Physics, [online] 70(4), pp.1239–1246. doi:https://doi.org/10.1016/j.ijrobp.2007.11.020.
  • Riboldi, M., et al. (2007). Quantitative Assessment of Surface Deformation in Accelerated Partial Breast Irradiation.[online] DOI:https://doi.org/10.1016/j.ijrobp.2007.07.2024
  • Philipp Schöffel, Harms, W., G. Sroka-Perez, Schlegel, W. and Karger, C.P. (2007). Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax. Physics in Medicine and Biology, 52(13), pp.3949–63. doi:https://doi.org/10.1088/0031-9155/52/13/019.
  • Bert, C., Metheany, K.G., Doppke, K.P., Taghian, A.G., Powell, S.N. and Chen, G.T.Y. (2006). Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. International Journal of Radiation Oncology*Biology*Physics, 64(4), pp.1265–1274. doi:https://doi.org/10.1016/j.ijrobp.2005.11.008.
  • Alexander, D.A., et al. (2023). One Year of Clinic-Wide Cherenkov Imaging for Discovery of Quality Improvement Opportunities in Radiation Therapy. Practical Radiation Oncology, [online] 13(1), pp.71–81. doi:https://doi.org/10.1016/j.prro.2022.06.009.
    ABSTRACT AVAILABLE
  • Spadea, M.F., Baroni, G., Gierga, D.P., Turcotte, J.C., Chen, G.T.Y. and Sharp, G.C. (2010). Evaluation and commissioning of a surface-based system for respiratory sensing in 4D CT. Journal of Applied Clinical Medical Physics, [online] 12(1), p.3288. doi:https://doi.org/10.1120/jacmp.v12i1.3288.
  • Hughes, S., McClelland, J., Tarte, S., Lawrence, D., Ahmad, S., Hawkes, D. and Landau, D. (2009). Assessment of two novel ventilatory surrogates for use in the delivery of gated/tracked radiotherapy for non-small cell lung cancer. Radiotherapy and Oncology, 91(3), pp.336–341. doi:https://doi.org/10.1016/j.radonc.2009.03.016.
  • Noel, C., Klein, E.A. and Moore, K.N. (2008). SU-GG-J-18: A Surface-Based Respiratory Surrogate for 4D Imaging. Medical Physics. doi:https://doi.org/10.1118/1.2961575.
  • Al‐Hallaq, H.A., et al. (2022). AAPM task group report 302: Surface‐guided radiotherapy. Medical Physics, 49(4). doi:https://doi.org/10.1002/mp.15532.
  • Freislederer, P., et al. (2022). ESTRO-ACROP guideline on surface guided radiation therapy. Radiotherapy and Oncology, 173, pp.188–196. doi:https://doi.org/10.1016/j.radonc.2022.05.026.
  • Lee, J., Yeon Joo Kim, Goh, Y., Yang, E.S., Kim, H., Si Yeol Song and Young Seok Kim (2023). Application of surface-guided radiation therapy in prostate cancer: comparative analysis of differences with skin marking-guided patient setup. Radiation oncology journal, [online] 41(3), pp.172–177. doi:https://doi.org/10.3857/roj.2023.00521.
    ABSTRACT AVAILABLE
  • Nguyen, D., Khodri, M., Sporea, C., Reinoso, R., Jacob, Y. and Farah, J. (2023). Investigating the robustness of the AlignRT InBoreTM co-calibration process and determining the overall tracking errors. Physica Medica, 108, p.102567. doi:https://doi.org/10.1016/j.ejmp.2023.102567.
    ABSTRACT AVAILABLE
  • Nguyen, D., Reinoso, R., Farah, J., Yossi, S., Lorchel, F., Passerat, V., Louet, E., Pouchard, I., Khodri, M. and Barbet, N. (2023). Reproducibility of surface-based deep inspiration breath-hold technique for lung stereotactic body radiotherapy on a closed-bore gantry linac. Physics and Imaging in Radiation Oncology, [online] 26, p.100448. doi:https://doi.org/10.1016/j.phro.2023.100448.
    ABSTRACT AVAILABLE
  • Oku, Y., Toyota, M. and Yasumasa Saigo (2023). Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiological Physics and Technology. doi:https://doi.org/10.1007/s12194-023-00741-2.
    ABSTRACT AVAILABLE
  • Lorchel, F., Nguyen, D., et al.(2022). Reproducibility of Deep-Inspiration Breath Hold treatments on HalcyonTM performed using the first clinical version of AlignRT InBoreTM: Results of CYBORE study. Clinical and Translational Radiation Oncology, 35, pp.90–96. doi:https://doi.org/10.1016/j.ctro.2022.05.002.
    ABSTRACT AVAILABLE
  • Nguyen, D., Farah, J., Barbet, N. and Khodri, M. (2020). Commissioning and performance testing of the first prototype of AlignRT InBoreTM a HalcyonTM and EthosTM-dedicated surface guided radiation therapy platform. Physica Medica, 80, pp.159–166.
    ABSTRACT AVAILABLE

  • Flores-Martinez, E., Cerviño, L.I., Pawlicki, T. and Kim, G.-Y. (2020). Assessment of the use of different imaging and delivery techniques for cranial treatments on the Halcyon linac. Journal of Applied Clinical Medical Physics, [online] 21(1), pp.53–61. doi:https://doi.org/10.1002/acm2.12772.
    ABSTRACT AVAILABLE
  • Blake, N., Pereira, L., Eaton, D.J. and Dobson, D. (2021). Surface-guided radiotherapy for lung cancer can reduce the number of close patient contacts without compromising initial setup accuracy. Technical Innovations & Patient Support in Radiation Oncology, 20, pp.61–63. doi:https://doi.org/10.1016/j.tipsro.2021.11.005.
    ABSTRACT AVAILABLE
  • Wiant, D.B., Verchick, Q., Gates, P., Vanderstraeten, C.L., Maurer, J.M., Hayes, T.L., Liu, H. and Sintay, B.J. (2016). A novel method for radiotherapy patient identification using surface imaging. Journal of Applied Clinical Medical Physics, [online] 17(2), pp.271–278. doi:https://doi.org/10.1120/jacmp.v17i2.6066.
    ABSTRACT AVAILABLE
  • Manger, R.P., Paxton, A.B., Pawlicki, T. and Kim, G.-Y. (2015). Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Medical Physics, 42(5), pp.2449–2461. doi:https://doi.org/10.1118/1.4918319.
    ABSTRACT AVAILABLE
  • Nalley, C. (2022). Reducing Anesthesia Use Among Pediatric Radiation Therapy Patients. Oncology Times, 44(1), pp.27–27.
    ACCESS PAPER
  • Chapman, J. T.; Chiu, T. D.; Parsons, D.D.M.; Chambers, E.; Park, Y. K.; Gu, X. et al. (2021): Impact of Pediatric Radiation Oncology With Movie Induced Sedation Effect (PROMISE) on Patient Movement and General Anesthesia Use in Pediatric Radiation Therapy. In International Journal of Radiation Oncology*Biology*Physics 111 (3), S92. DOI: 10.1016/j.ijrobp.2021.07.217.
    ACCESS PAPER
  • Sueyoshi, M., Olch, A.J., Liu, K.X., Chlebik, A., Clark, D. and Wong, K.K. (2019). Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy. Practical Radiation Oncology, [online] 9(1), pp.e110–e117. doi:https://doi.org/10.1016/j.prro.2018.08.011.
    ABSTRACT AVAILABLE
  • Rwigema, J.-C.M., Lamiman, K., Reznik, R.S., Lee, N.J.H., Olch, A. and Wong, K.K. (2017). Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient—a teaching case. Advances in Radiation Oncology, [online] 2(1), pp.101–104. doi:https://doi.org/10.1016/j.adro.2016.12.007.
    ABSTRACT AVAILABLE
  • Qubala, A., Schwahofer, A., Jersemann, S., Eskandarian, S., Harrabi, S., Naumann, P., Winter, M., Ellerbrock, M., Shafee, J., Abtehi, S., Herfarth, K., Debus, J. and Jäkel, O. (2023). Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. Advances in Radiation Oncology, [online] 8(2), p.101105. doi:https://doi.org/10.1016/j.adro.2022.101105.
    ACCESS PAPER
  • Apicella, G., Loi, G., Torrente, S., Crespi, S., Beldì, D., Brambilla, M. and Krengli, M. (2016). Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors. La Radiologia Medica, [online] 121(10), pp.805–810. doi:https://doi.org/10.1007/s11547-016-0659-9.
    ACCESS PAPER
  • Krengli, M., Loi, G., Pisani, C., Beldì, D., Apicella, G., Amisano, V. and Brambilla, M. (2016). Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer. Radiation Oncology, 11(1). doi:https://doi.org/10.1186/s13014-016-0734-3.
    ACCESS PAPER
    • Qubala, A., et al. (2023). Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. Advances in Radiation Oncology, 8(2).
      ACCESS PAPER
    • Macfarlane, M.T., Jiang, K., Mundis, M., Nichols, E.M., Gopal, A., Chen, S. and Biswal, N.C. (2021). Comparison of the dosimetric accuracy of proton breast treatment plans delivered with SGRT and CBCT setups. Journal of Applied Clinical Medical Physics, [online] 22(9), pp.153–158. doi:https://doi.org/10.1002/acm2.13357.
      ABSTRACT AVAILABLE
    • Wang X., et al. (2019) A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging. Radiation Oncology, 2019 Dec 11;14(1):224. doi: 10.1186/s13014-019-1436-4
      ACCESS PAPER
    • Batin E., et al. (2018). Reducing X-ray imaging for proton postmastectomy chest wall patients. Practical Radiation Oncology, 8(5):e266-e274. doi: 10.1016/j.prro.2018.03.002.
      ABSTRACT AVAILABLE
    • Mutter, R.W., et al. (2017). Initial clinical experience of postmastectomy intensity modulated proton therapy in patients with breast expanders with metallic ports. Practical Radiation Oncology, pp.e243–e252. doi:https://doi.org/10.1016/j.prro.2016.12.002.
      ABSTRACT AVAILABLE
    • Batin, E., et al. (2016). Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation? Practical Radiation Oncology, 6(6), pp.e235–e241. doi:https://doi.org/10.1016/j.prro.2016.02.001.
      ABSTRACT AVAILABLE
  • Gierga, D.P., Turcotte, J.C., Tong, L.W., Chen, Y.-L.E. and DeLaney, T.F. (2014). Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Practical Radiation Oncology, 4(4), pp.261–266. doi:https://doi.org/10.1016/j.prro.2013.09.001.
    ABSTRACT AVAILABLE
  • Zhou, A. Z., Conway, L., Bartlett, S., Marques, A., Physic, M., Czerminska, M., Spektor, A., Killoran, J. H., Friesen, S., Bredfeldt, J., & Huynh, M. A. (2024). Prospective Evaluation of the Clinical Benefits of a Novel Tattoo-less Workflow for Nonspine Bone Stereotactic Body Radiation Therapy: Integrating Surface-Guidance With Triggered Imaging Reduces Treatment Time and Eliminates the Need for Tattoos. Practical Radiation Oncology, 14(2), 93-102.
    ABSTRACT AVAILABLE
  • Dai, Z., He, Q., Zhu, L., Zhang, B., Jin, H., Geng, Y., Cai, C., Xiang, T., Jian, W., Chen, Y., Zhang, H., Wu, J. and Wang, X. (2023). Automatic prediction model for online diaphragm motion tracking based on optical surface monitoring by machine learning. Quantitative imaging in medicine and surgery, [online] 13(4), pp.2065–2080.
    ABSTRACT AVAILABLE
  • Guo, H., Wu, W., H, Y. and Zhang, H. (2023). SGRT‐based stereotactic body radiotherapy for lung cancer setup accuracy and margin of the PTV. Journal of Applied Clinical Medical Physics. doi:https://doi.org/10.1002/acm2.14195.
    ABSTRACT AVAILABLE
  • Kaučić et al. (2022). Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer Using Optical Surface Management System – AlignRT as an Optical Body Surface Motion Management in Deep Breath Hold Patients: Results from a Single-Arm Retrospective Study. Cancer Management and Research, Volume 14, pp.2161–2172. doi:https://doi.org/10.2147/cmar.s368662.
    ABSTRACT AVAILABLE
  • Heinzerling, J. H.; Biester, E. C.; Robinson, M.; Moeller, B. J.; Prabhu, R. S.; Ward, M. C. et al. (2021): Prospective Study of Surface Guided Radiation Therapy (SGRT) for Breath Hold SBRT Treatments of the Lung: Analysis of Reliability of Surface Guidance Alone for Internal Tumor Position During Breath Hold. In International journal of radiation oncology, biology, physics 111 (3S), e539. DOI: 10.1016/j.ijrobp.2021.07.1468.
    ACCESS PAPER
  • Naumann, Batista et al. Feasibility of Optical Surface-Guidance for Position Verification and Monitoring of Stereotactic Body Radiotherapy in Deep-Inspiration Breath-Hold. Front Oncol . 2020 Sep 25;10:573279. doi: 10.3389/fonc.2020.573279. eCollection 2020.
    ABSTRACT AVAILABLE
  • Zhao, B., Park, Y.K., Gu, X., Reynolds, R., Timmerman, R. and Sher, D.J. (2020). Surface guided motion management in glottic larynx stereotactic body radiation therapy. Radiotherapy and Oncology, 153, pp.236–242. doi:https://doi.org/10.1016/j.radonc.2020.08.027.
    ABSTRACT AVAILABLE
  • Heinzerling, J. H. et al.(2020). Use of surface‐guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen. Journal of Applied Clinical Medical Physics, 21(5), pp.48–55. doi:https://doi.org/10.1002/acm2.12852.
    ABSTRACT AVAILABLE
  • Alderliesten, T. et al., 2012. 3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer. Radiother Oncol. 2012 Nov;105(2):155-60. doi: 10.1016/j.radonc.2012.08.016.
    ABSTRACT AVAILABLE
  • Jin, H. and Su, Z. (2012). SU-E-T-225: A Comprehensive Evaluation of Real-Time Motion Tracking of a Surface Imaging System for Lung Treatment. Medical Physics, 39, pp.3755–3755. doi:https://doi.org/10.1118/1.4735288.
    ABSTRACT AVAILABLE
  • H Jin, Z Su. A Comprehensive Evaluation of Real-Time Motion Tracking of a Surface Imaging System for Lung Treatment. Med Phys. 2012 Jun;39(6Part13):3755
    ABSTRACT AVAILABLE
  • Turna, M., Küçükmorkoç, E., Rzazade, R., Canoğlu, M.D., Küçük, N. and Çağlar, H.B. (2023). Feasibility and Tolerability of Surface Guided Radiotherapy in Breath-Hold Liver Stereotactic Body Radiotherapy.
    doi:https://doi.org/10.21203/rs.3.rs-2411152/v1.
    ABSTRACT AVAILABLE
  • Foster, R.D., Moeller, B.J., Robinson, M., Bright, M., Ruiz, J.L., Hampton, C.J. and Heinzerling, J.H. (2023). Dosimetric Analysis of Intra-Fraction Motion Detected by Surface-Guided Radiation Therapy During Linac Stereotactic Radiosurgery. Advances in Radiation Oncology, [online] 8(3), p.101151.
    ACCESS PAPER
  • Chen, X., Liu, L., Wang, Y., Huang, X., Cai, W., Rong, X., Lin, L., Liu, J. and Jiang, X. (2023). Surface guided radiation therapy with an innovative open-face mask and mouth bite: patient motion management in brain stereotactic radiotherapy. doi:https://doi.org/10.1007/s12094-023-03260-z.
    ACCESS PAPER
  • Zhou, S .et al. (2022). Initial clinical experience of surface guided stereotactic radiation therapy with open-face mask immobilization for improving setup accuracy: a retrospective study. Radiation Oncology (London, England), [online] 17(1), p.104. doi:https://doi.org/10.1186/s13014-022-02077-4.
    ABSTRACT AVAILABLE
  • Jursinic, P., Jordan, K. and Chen, C. (2022). Positions of radiation isocenter and the couch rotation center established by Winston-Lutz and optical measurements. Technical Innovations & Patient Support in Radiation Oncology, 21, pp.46–50. doi:https://doi.org/10.1016/j.tipsro.2022.01.004.
    ACCESS PAPER
  • Foster, R. D.; Moeller, B. J.; Robinson, M.; Bright, M.; Ruiz, J. L.; Hampton, C. J.; Heinzerling, J. H. (2021): Dosimetric Analysis of Intra-Fraction Motion Detected by Surface Guided Radiation Therapy During Linac Stereotactic Radiosurgery. In International journal of radiation oncology, biology, physics 111 (3S), e540. DOI: 10.1016/j.ijrobp.2021.07.1471.
    ACCESS PAPER
  • Gregucci, Fabiana; Bonaparte, Ilaria; Surgo, Alessia; Caliandro, Morena; Carbonara, Roberta; Ciliberti, Maria Paola et al. (2021): Brain Linac-Based Radiation Therapy: “Test Drive” of New Immobilization Solution and Surface Guided Radiation Therapy. In JPM 11 (12), p. 1351. DOI: 10.3390/jpm11121351.
    ABSTRACT AVAILABLE
  • Lee, Sang Kyu; Huang, Sheng; Zhang, Lei; Ballangrud, Ase M.; Aristophanous, Michalis; Cervino Arriba, Laura I.; Li, Guang (2021): Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. In Journal of applied clinical medical physics. DOI: 10.1002/acm2.13241.
    ABSTRACT AVAILABLE
  • Ornelas, Mariluz de; Diwanji, Tejan; Monterroso, Irene; Bossart, Elizabeth; Yechieli, Raphael; Dogan, Nesrin; Mellon, Eric A. (2021): Assessment of intra-fraction motion during automated linac-based SRS treatment delivery with an open face mask system. In Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 92, pp. 69–74. DOI: 10.1016/j.ejmp.2021.11.012.
    ABSTRACT AVAILABLE
  • Palmer, J.D., Sebastian, N.T., Chu, J., DiCostanzo, D., Bell, E.H., Grecula, J., Arnett, A., Blakaj, D.M., McGregor, J., Elder, J.B., Lu, L., Zoller, W., Addington, M., Lonser, R., Chakravarti, A., Brown, P.D. and Raval, R. (2020). Single-Isocenter Multitarget Stereotactic Radiosurgery Is Safe and Effective in the Treatment of Multiple Brain Metastases. Advances in Radiation Oncology, 5(1), pp.70–76.
    ABSTRACT AVAILABLE
  • Covington, Stanley, et al. Surface guided imaging during stereotactic radiosurgery with automated delivery. Journal of Applied Clinical Medical Physics. 2020 Dec;21(12):90-95. doi: 10.1002/acm2.13066. Epub 2020 Oct 23
    ABSTRACT AVAILABLE
  • Covington EL, et al. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. Journal of Applied Clinical Medical Physics 2019;20 (6):91-98.
    ABSTRACT AVAILABLE
  • Jursinic, P. (2018). “Comparison of Head Immobilization with a Metal Frame and Two Different Models of Face Masks.” Journal of Cancer and Cure  1(1): 1-7.
    ACCESS PAPER
  • Oliver, J. A., et al. (2017). “Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system.” Adv Radiat Oncol 2(3): 494-502.
    ABSTRACT AVAILABLE
  • Wen, N., Snyder, K.C., Scheib, S.G., Schmelzer, P., Qin, Y., Li, H., Siddiqui, M.S. and Chetty, I.J. (2016). Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator-based stereotactic radiosurgery system. Medical Physics, 43(5), pp.2527–2537. doi:https://doi.org/10.1118/1.4947199.
    ABSTRACT AVAILABLE
  • Chinsky, B., Patel, R., Roeske, J. and Surucu, M. (2016). SU-F-T-640: Feasibility of Using a Commercially Available Surface Guided Radiotherapy System with An Open-Face SRS Immobilization System. Medical Physics, 43(6Part23), pp.3611–3611. doi:https://doi.org/10.1118/1.4956825.
    ABSTRACT AVAILABLE
  • Mancosu, P., Fogliata, A., Stravato, A., Tomatis, S., Cozzi, L. and Scorsetti, M. (2016). Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Medical Dosimetry, [online] doi:https://doi.org/10.1016/J.MEDDOS.2015.12.003.
    ABSTRACT AVAILABLE
  • Wen, N. et al.(2015). Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. Journal of Applied Clinical Medical Physics, [online] 16(4), pp.125–148. doi:https://doi.org/10.1120/jacmp.v16i4.5313.
    ABSTRACT AVAILABLE
  • Lau, S.K.M. et al. (2015). Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Neurosurgery, 77(2), pp.233–240.
  • Li, G. et al. (2015). Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. Journal of Applied Clinical Medical Physics, 16(4), pp.149–162. doi:https://doi.org/10.1120/jacmp.v16i4.5416.
  • Pham, N.-L.L. et al. (2014). Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Translational Cancer Research, [online] 3(4). doi:https://doi.org/10.3978/j.issn.2218-676X.2014.07.08.
  • Paravati, A.J. et al. (2014). Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia. Translational Cancer Research, [online]. doi:https://doi.org/10.3978/j.issn.2218-676X.2014.07.03.
  • Baker, B.C. and Sullivan, T.A. (2013). Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report. Cureus. doi:https://doi.org/10.7759/cureus.139.
  • Li, G., et al. (2013). Migration from full-head mask to ‘open-face’ mask for immobilization of patients with head and neck cancer. Journal of Applied Clinical Medical Physics, 14(5), pp.243–254. doi:https://doi.org/10.1120/jacmp.v14i5.4400.
  • Wiersma, R.D., Tomarken, S.L., Grelewicz, Z., Belcher, A.H. and Kang, H. (2013). Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Medical Physics, 40(11), p.111712. doi:https://doi.org/10.1118/1.4823757.
  • Pan, H. et al. (2012). Frameless, Real-Time, Surface Imaging-Guided Radiosurgery. Neurosurgery, 71(4), pp.844–852. doi:https://doi.org/10.1227/neu.0b013e3182647ad5.
  • Cerviño, L.I. et al. (2012). Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Practical Radiation Oncology, 2(1), pp.54–62. doi:https://doi.org/10.1016/j.prro.2011.04.005.
  • Li, G., et al. (2011). Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Medical Physics, 38(7), pp.3981–3994. doi:https://doi.org/10.1118/1.3596526.
  • Li, G., A. , B., Kuo, L.-C. & H. , K., 2011. Optical Surface Imaging for Online Rotation Correction and Real-Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery. Medical Physics 38(6):3711.DOI:10.1118/1.3612963.
    ABSTRACT AVAILABLE
  • Cerviño, L.I., Pawlicki, T., Lawson, J.D. and Jiang, S.B. (2010). Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Physics in Medicine and Biology, 55(7), pp.1863–1873. doi:https://doi.org/10.1088/0031-9155/55/7/005.
  • Qubala, A., Shafee, J., Batista, V., Liermann, J., Winter, M., Piro, D. and Jäkel, O. (2023). Comparative evaluation of a surface-based respiratory monitoring system against a pressure sensor for 4DCT image reconstruction in phantoms. Journal of Applied Clinical Medical Physics, [online] p.e14174. doi:https://doi.org/10.1002/acm2.14174.
    ABSTRACT AVAILABLE
  • Giantsoudi PhD, et al (2022). Tattoo Free Set-up for Breast Cancer Patients Receiving Regional Nodal Irradiation, Practical Radiation Oncology. https://doi.org/10.1016/j.prro.2022.08.001
    ACCESS PAPER
  • Batista, V., et al. (2022). Surface guided radiation therapy: An international survey on current clinical practice. Technical Innovations & Patient Support in Radiation Oncology, 22, pp.1–8. doi:https://doi.org/10.1016/j.tipsro.2022.03.003.
    ACCESS PAPER
  • Beer, K.T. (2022). Introduction of SGRT in clinical practice. Technical Innovations and Patient Support in Radiation Oncology, [online] 21, pp.27–30. doi:https://doi.org/10.1016/j.tipsro.2022.01.003.
    ACCESS PAPER
  • Al-Hallaq, H., Batista, V., Kügele, M., Ford, E., Viscariello, N. and Meyer, J. (2021). The role of surface-guided radiation therapy for improving patient safety. Radiotherapy and Oncology, 163, pp.229–236. doi:https://doi.org/10.1016/j.radonc.2021.08.008.
    ACCESS PAPER
  • Blake, N., Pereira, L., Eaton, D.J. and Dobson, D. (2021). Surface-guided radiotherapy for lung cancer can reduce the number of close patient contacts without compromising initial setup accuracy. Technical Innovations & Patient Support in Radiation Oncology, 20, pp.61–63. doi:https://doi.org/10.1016/j.tipsro.2021.11.005.
    ACCESS PAPER
  • Wei, W., Ioannides, P.J., Sehgal, V. and Daroui, P. (2020). Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. Journal of Applied Clinical Medical Physics, 21(6), pp.73–82. doi:https://doi.org/10.1002/acm2.12867.
    ABSTRACT AVAILABLE
  • Rigley, J., Robertson, P. and Scattergood, L. (2020). Radiotherapy without tattoos: Could this work? Radiography, 26(4), pp.288–293. doi:https://doi.org/10.1016/j.radi.2020.02.008.‌
    ABSTRACT AVAILABLE
  • Kang, H., Patel, R.P. and Roeske, J.C. (2019). Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. Journal of Applied Clinical Medical Physics, [online] 20(10), pp.127–133. doi:https://doi.org/10.1002/acm2.12723.‌
    ACCESS PAPER
  • Moser, T., Creed, M., Walker, R. and Meier, G. (2019). Radiotherapy tattoos: Women’s skin as a carrier of personal memory—What do we cause by tattooing our patients? The Breast Journal. doi:https://doi.org/10.1111/tbj.13591.‌
    ACCESS PAPER
  • Hoisak, J.D.P. and Pawlicki, T. (2018). The Role of Optical Surface Imaging Systems in Radiation Therapy. Seminars in Radiation Oncology, 28(3), pp.185–193. doi:https://doi.org/10.1016/j.semradonc.2018.02.003.
    ABSTRACT AVAILABLE
  • Mhatre, V. (2017). Quality assurance for clinical implementation of an Optical Surface monitoring system. IOSR Journal of Applied Physics (IOSR-JAP, [online] 9(6), pp.15–22. doi:https://doi.org/10.9790/4861-0906021522.
    ACCESS PAPER
  • Paxton, A.B., Manger, R.P., Pawlicki, T. and Kim, G.-Y. (2017). Evaluation of a surface imaging system’s isocenter calibration methods. Journal of Applied Clinical Medical Physics, 18(2), pp.85–91. doi:https://doi.org/10.1002/acm2.12054.
    ABSTRACT AVAILABLE

Get in touch

Vision RT’s family of SGRT solutions guide radiation therapy for better patient care at every step: sim, planning and treatment.

Whether you’re looking for a quote, a product demo (virtual or in-person) or just more information, please get in touch: