References

REFERENCES

1016-0264 AlignRT General Overview Issue 4.0

  1. Giantsoudi PhD, et al. Tattoo Free Set-up for Breast Cancer Patients Receiving Regional Nodal Irradiation, Practical Radiation Oncology (2022).
  2. Mueller et al. Accuracy and Efficiency of Patient Setup Using Surface Imaging versus Skin Tattoos for Accelerated Partial Breast Irradiation (2023).
  3. Sauer, TO. et al. Prerequisites for the clinical implementation of a markerless SGRT-only workflow for the treatment of breast cancer patients. Strahlenther Onkol 199, 22–29 (2023).
  4. Wei et al. Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys, 21 (2020), pp. 73-82 .
  5. Hickey et al. Surface Guided Radiotherapy (SGRT) vs Varian RPM for deep inspiration breath-hold (DIBH) breast treatments (2018-2020).
  6. Kang, S., Jin, H., Chang, J.H. et al. Evaluation of initial patient setup methods for breast cancer between surface-guided radiation therapy and laser alignment based on skin marking in the Halcyon system. Radiat Oncol 18, 60 (2023).
  7. Flores-Martinez et al. Assessment of the use of different imaging and delivery techniques for cranial treatments on the halcyon linac. J Appl Clin Med Phys (2020) 21:53–61.
  8. “Efficiency, Standardisation and Clinical Excellence: One Goal Across a Large Network” SGRT Community Meeting 2022 Presentation by Kira-Lee Oliver, Genesis Care Florida, June 2022.
  9. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  10. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  11. Marks et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):214-23.
  12. Zagar et al. Utility of Deep inspiration breath-hold for left sided breast radiation therapy in preventing early cardiac perfusion defects – A Prospective Study. Int J Radiat Oncol Biol Phys. 2017.

1016-0382 AlignRT Accessories Issue 2.0

  1. “Efficiency, Standardisation and Clinical Excellence: One Goal Across a Large Network” SGRT Community Meeting 2022 Presentation by Kira-Lee Oliver, Genesis Care Florida, June 2022.

1016-0468 AlignRT InBore Issue 3.0

  1. Flores-Martinez, E., Cerviño, L.I., Pawlicki, T. and Kim, G.-Y. (2020). Assessment of the use of different imaging and delivery techniques for cranial treatments on the Halcyon linac. Journal of Applied Clinical Medical Physics, [online] 21(1), pp.53–61. doi:https://doi.org/10.1002/acm2.12772.
  2. Lorchel, F., Nguyen, D., et al.(2022). Reproducibility of Deep-Inspiration Breath Hold treatments on HalcyonTM performed using the first clinical version of AlignRT InBoreTM: Results of CYBORE study. Clinical and Translational Radiation Oncology, 35, pp.90–96. doi:https://doi.org/10.1016/j.ctro.2022.05.002.
  3. Oku, Y., Toyota, M. and Yasumasa Saigo (2023). Characteristics of detection accuracy of the patient setup using InBore optical patient positioning system. Radiological Physics and Technology. doi:https://doi.org/10.1007/s12194-023-00741-2.
  4. Nguyen, Farah et al.  Commissioning and performance testing of the first prototype of AlignRT InBore™ a Halcyon™ and Ethos™-dedicated surface guided radiation therapy platform. Phys Med . 2020 Dec;80:159-166. doi: 10.1016/j.ejmp.2020.10.024. Epub 2020 Nov 11

1016-0493 AlignRT InBore Clinical Papers Summary Issue 1.0

  1. Flores-Martinez E, et al. Assessment of the use of different imaging and delivery techniques for cranial treatments on the halcyon linac. Journal of Applied Clinical Medical Physics 2020;21 (1):53-61.
  2. Nguyen D, et al. Commissioning and performance testing of the first prototype of AlignRT InBore a Halcyon and Ethos-dedicated surface guided radiation therapy platform. Physica Medica: European Journal of Medical Physics 2020;80:159-166.

1016-0560 Patient ID Module Issue 2.0

  1. Agency for Healthcare Research and Quality (AHRQ). Identifying Adverse Events at the National Level: Hospital Outpatient Settings. Rockville, MD: AHRQ, 2008.
  2. Bates et al. Wrong-Patient Errors in Medication Administration: Frequency and Severity. Journal of Patient Safety, vol. 5, no. 3, pp. 154-160, 2009.

1016-0301 AlignRT DIBH Detailer

  1. Darby SC, Ewertz M, McGale P, Bennet AM, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98
  2. Harris EE, et al Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol. 2006 Sep 1;24(25):4100-6.
  3. Zagar T, et al. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study. Int J Radiat Oncol Biol Phys 2017;97 (5):903-909.
  4. Zellars R et al. SPECT analysis of cardiac perfusion changes after whole-breast/chest wall radiation therapy with or without active breathing coordinator: results of a randomized phase 3 trial. Int J Radiat Oncol Biol Phys. 2014 Mar 15;88(4):778-85.
  5. Gierga et al. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging. Int J Radiat Oncol Biol Phys. 2012 Dec 1;84(5):e663-8
  6. Mittauer et al. Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system. Med Phys. 2015 Jan;42(1):134-43.
  7. Bartlett et al. The UK HeartSpare Study: randomised evaluation of voluntary deep-inspiratory breath-hold in women undergoing breast radiotherapy. Radiother Oncol. 2013 Aug;108(2):242-7.
  8. Marks et al. The incidence and functional consequences of RT associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):214-23.
  9. Wiant et al. The Accuracy of AlignRT Guided Set-Up for Whole Breast and Chestwall Irradiation, AAPM Abstract SU-D-213CD-2 2012
  10. O’Connor et al. A Review of the Magnitude of Patient Imaging Shifts in Relation to Departmental Policy Changes. AAPM Abstract SU-E-J-16 2014
  11. Herron E, et al. Surface guided radiation therapy as a replacement for patient marks in treatment of breast cancer. Int J Radiat Oncol Biol Phys. 2018; 102 (3):e492-e493.
  12. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline Smith, Benjamin D. et al. Practical Radiation Oncology, Volume 8, Issue 3, 145 – 152

1016-0302 AlignRT SRS / SBRT

  1. Pan H, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery 2012;71 (4):844-851.
  2. Paravati et al. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia, Translational Cancer Research, 3, 4, 333-337, August, 2014.
  3. Lau S et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol (2017) 132:307–312
  4. Pham NL, et al. Frameless, real-time, surface imaging-guided radiosurgery: Update on clinical outcomes for brain metastases. Translational Cancer Research 2014;3 (4):351-357.
  5. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  6. Wen N, et al. Technical note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2016;43 (5):2527.
  7. Peng et al. Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys. 2010 Oct;37(10):5421-33.
  8. Cerviño et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62.
  9. Lau et al. Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Neurosurgery. 2015 Aug;77(2):233-40;
  10. Li et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015 Jul 8;16(4):5416.
  11. Li et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011 Jul;38(7):3981-94.
  12. Li et al. Optical Surface Imaging for Online Rotation Correction and Real‐Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery, M9ed. Phys., Volume 38, 3711, 2011
  13. Mancosu et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016 Summer;41(2):173-9
  14. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  15. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  16. Wen et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015 Jul 8;16(4):5313.
  17. Wen et at. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527,
  18. Wiersma et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013 Nov;40(11):111712.
  19. Cerviño et al. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010 Apr 7;55(7):1863-73
  20. Heinzerling JH, et al. Use of 3d optical surface mapping for quantification of interfraction set up error and intrafraction motion during stereotactic body radiation therapy treatments of the lung and abdomen. International Journal of Radiation Oncology • Biology • Physics 2017;99 (2):E670.

1016-0585 AlignRT Proton

  1. Batin, E., et al. (2016). Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation? Practical Radiation Oncology, 6(6), pp.e235–e241. doi:https://doi.org/10.1016/j.prro.2016.02.001.
  2. Wang X., et al. (2019) A novel approach to Verify air gap and SSD for proton radiotherapy using surface imaging. Radiation Oncology, 2019 Dec 11;14(1):224. doi: 10.1186/s13014-019-1436-4.
  3. Batin E., et al. (2018). Reducing X-ray imaging for proton postmastectomy chest wall patients. Practical Radiation Oncology, 8(5):e266-e274. doi: 10.1016/j.prro.2018.03.002.
  4. Macfarlane, M.T., et al. (2021). Comparison of the dosimetric accuracy of proton breast treatment plans delivered with SGRT and CBCT setups. Journal of Applied Clinical Medical Physics, [online] 22(9), pp.153–158. doi:https://doi.org/10.1002/acm2.13357.
  5. Qubala, A., et al. (2023). Optimizing the Patient Positioning Workflow of Patients with Pelvis, Limb, and Chest/Spine Tumors at an Ion-Beam Gantry based on Optical Surface Guidance. Advances in Radiation Oncology, 8(2). https://doi.org/10.1016/j.adro.2022.101105

1016-0601 Issue 1.0 AlignRT FSC Urology Brochure

  1. Case Study: Utilizing AlignRT for a Better Patient Experience - UCSD (0008-0029)
  2. Case Study: Reduction in Treatment Time and Increased Throughput - Northside Hospital Cancer Institute (1016-0487)
  3. Case Study: Clinical Excellence with Vision RT - SSM Health St. Mary’s Hospital (008-0012)
  4. Case Study: Reduction in Expenses and Patient Volume Increase - GenesisCare Boca Raton (1016-0500)
  5. Case Study: Financial Growth and Throughput  (1016-0455)

 

AlignRT SRS Materials References

1016-0437 AlignRT SRS Clinicals Summary Issue 1.0
1016-0442 AlignRT 5.1 Clinicals Summary Issue 1.0

  1. Pham NL, et al. Frameless, real-time, surface imaging-guided radiosurgery: Update on clinical outcomes for brain metastases. Translational Cancer Research 2014;3 (4):351-357.
  2. Lau S et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol (2017) 132:307–312
  3. Lau et al. Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Neurosurgery. 2015 Aug;77(2):233-40;
  4. Peng et al. Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys. 2010 Oct;37(10):5421-33.
  5. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  6. Cerviño et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62.
  7. Li et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015 Jul 8;16(4):5416.
  8. Li et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011 Jul;38(7):3981-94.
  9. Li et al. Optical Surface Imaging for Online Rotation Correction and Real‐Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery, M9ed. Phys., Volume 38, 3711, 2011
  10. Mancosu et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016 Summer;41(2):173-9
  11. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  12. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  13. Wen et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015 Jul 8;16(4):5313.
  14. Wen et at. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527,
  15. Wiersma et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013 Nov;40(11):111712.
  16. Cerviño et al. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010 Apr 7;55(7):1863-73
  17. Covington EL, et al. Optical surface guidance for submillimeter monitoring of patient position during frameless stereotactic radiotherapy. Journal of Applied Clinical Medical Physics 2019;20 (6):91-98.
  18. Paravati et al. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia, Translational Cancer Research, 3, 4, 333-337, August, 2014,
  19. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  20. Wen N, et al. Technical note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2016;43 (5):2527.
  21. Wiant, D., et al. Direct comparison between surface imaging and orthogonal radiographic imaging for SRS localization in phantom. Journal of Applied Clinical Medical Physics 0(0) 2018.
  22. Pan H, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery 2012;71 (4):844-851.

 

1016-0389 AlignRT Advance SRS Module Issue 1.0
1016-0443 AlignRT 5.1 SRS Module Issue 1.0

  1. Pan H, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery 2012;71 (4):844-851.
  2. Paravati et al. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia, Translational Cancer Research, 3, 4, 333-337, August, 2014.
  3. Lau S et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol (2017) 132:307–312
  4. Pham NL, et al. Frameless, real-time, surface imaging-guided radiosurgery: Update on clinical outcomes for brain metastases. Translational Cancer Research 2014;3 (4):351-357.
  5. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  6. Wen N, et al. Technical note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2016;43 (5):2527.
  7. Peng et al. Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys. 2010 Oct;37(10):5421-33.
  8. Cerviño et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62.
  9. Lau et al. Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Neurosurgery. 2015 Aug;77(2):233-40;
  10. Li et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015 Jul 8;16(4):5416.
  11. Li et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011 Jul;38(7):3981-94.
  12. Li et al. Optical Surface Imaging for Online Rotation Correction and Real‐Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery, M9ed. Phys., Volume 38, 3711, 2011
  13. Mancosu et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016 Summer;41(2):173-9
  14. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  15. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  16. Wen et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015 Jul 8;16(4):5313.
  17. Wen et at. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527,
  18. Wiersma et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013 Nov;40(11):111712.
  19. Cerviño et al. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010 Apr 7;55(7):1863-7

1016-0303 AlignRT Pediatrics & Sarcoma Detailer

  1. Rwigema J-CM, et al. Palliative radiation therapy for superior vena cava syndrome in metastatic wilms tumor using 10xfff and 3d surface imaging to avoid anesthesia in a pediatric patient— a teaching case. Advances in Radiation Oncology 2017.
  2. Gierga et al. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Pract Radiat Oncol. 2014 Jul-Aug;4(4):261-6

1016-0066 AlignRT Marketing Materials Case Study

  1. Wiant et al. A novel method for radiotherapy patient identification using surface imaging. Journal of Applied Clinical Medical Physics, 2016, 17(2):271-278

1016-0263 Vision RT Customer Service & Support

  1. Data on file. Research available to customers upon request.

Patients Prefer Tattooless and Markless Radiation Therapy

  1. Herron E, et al. Surface guided radiation therapy as a replacement for patient marks in treatment of breast cancer. International Journal of Radiation Oncology • Biology • Physics 2018;102 (3):e492-e493.
  2. Shah AP, et al. Clinical evaluation of interfractional variations for whole breast radiotherapy using 3-dimensional surface imaging. Pract Radiat Oncol 2013;3 (1):16-25.
  3. Sueyoshi, et al Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy PRO https://doi.org/10.1016/j.prro.2018.08.011

Checklist: Evaluating SGRT Systems

  1. Zagar T, et al. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study. Int J Radiat Oncol Biol Phys 2017;97 (5):903-909.
  2. Gierga et al. A Voluntary Breath-Hold Treatment Technique for the Left Breast With Unfavorable Cardiac Anatomy Using Surface Imaging. Int J Radiat Oncol Biol Phys. 2012 Dec 1;84(5):e663-8
  3. Cerviño et al. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol. 2009 Nov 21;54(22):6853-65.:
  4. Rochet et al. Deep inspiration breath-hold technique in left sided breast cancer radiation therapy: Evaluating cardiac contact distance as a predictor of cardiac exposure for patient selection. Practical Radiation Oncology (2015) 5, e127-e134:
  5. Rong et al. Improving intra-fractional target position accuracy using a 3D surface surrogate for left breast irradiation using the respiratory-gated deep-inspiration breath-hold technique. PLoS One. 2014 May 22;9(5):e97933
  6. Tang et al. Clinical experience with 3-dimensional surface matching-based deep inspiration breath hold for left-sided breast cancer radiation therapy. Pract Radiat Oncol. 2014 May-Jun;4(3):e151-8.:
  7. Tang et al. Dosimetric effect due to the motion during deep inspiration breath hold for left-sided breast cancer radiotherapy. J Appl Clin Med Phys. 2015 Jul 8;16(4):5358.:
  8. Tanguturi et al. Prospective assessment of deep inspiration breath-hold using 3-dimensional surface tracking for irradiation of left-sided breast cancer. Pract Radiat Oncol. 2015 Nov-Dec;5(6):358-65
  9. Cerviño et al. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010 Apr 7;55(7):1863-73
  10. Peng et al. Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys. 2010 Oct;37(10):5421-33.
  11. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  12. Cerviño et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62.
  13. Li et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015 Jul 8;16(4):5416.
  14. Li et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011 Jul;38(7):3981-94.
  15. Li et al. Optical Surface Imaging for Online Rotation Correction and Real‐Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery, Med. Phys., Volume 38, 3711, 2011
  16. Mancosu et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016 Summer;41(2):173-9
  17. Wen et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015 Jul 8;16(4):5313.
  18. Wen et at. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527,
  19. Wiersma et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013 Nov;40(11):111712.
  20. Covington E, et al. Submillimeter monitoring of intrafraction patient movement with optical surface imaging. AAPM Annual Meeting 2018.
  21. Paravati et al. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia, Translational Cancer Research, 3, 4, 333-337, August, 2014,
  22. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  23. Herron E, et al. Surface guided radiation therapy as a replacement for patient marks in treatment of breast cancer. International Journal of Radiation Oncology • Biology • Physics 2018;102 (3):e492-e493.
  24. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  25. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  26. Lau S et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol (2017) 132:307–312
  27. Chang et al. Video surface image guidance for external beam partial breast irradiation. Pract Radiat Oncol. 2012 Apr-Jun;2(2):97-105.
  28. Heinzerling JH, et al. Use of 3d optical surface mapping for quantification of interfraction set up error and intrafraction motion during stereotactic body radiation therapy treatments of the lung and abdomen. Int J Rad Onc • Biology • Physics 2017;99 (2):E670.
  29. Gierga et al. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Pract Radiat Oncol. 2014 Jul-Aug;4(4):261-6
  30. Sueyoshi et al Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy Pract Radiat Oncol. 2019 Jan-Feb;9(1):110-117
  31. Please contact Vision RT for customer reference
  32. Independent research from Circle Research. Please contact Vision RT for details of results

References for SBRT/SABR (Website Page)

  1. Wen et at. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527
  2. Covington E, et al. Submillimeter monitoring of intrafraction patient movement with optical surface imaging. AAPM Annual Meeting 2018.
  3. Vision RT. Advanced Camera Optimization [White paper] 2018
  4. Heinzerling JH et al. Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen J Appl Clin Med Phys. 2020 May;21(5):48-55
  5. Leong B et al. Impact of Use of Optical Surface Imaging on Initial Patient Setup for Stereotactic Body Radiotherapy Treatments. Journal of Applied Clinical Medical Physics 2019; 20 (12):149-158
  6. Herron E, et al. Surface guided radiation therapy as a replacement for patient marks in treatment of breast cancer. International Journal of Radiation Oncology • Biology • Physics 2018;102 (3):e492-e493
  7. Allen and Ramtohul. Markerless Radiotherapy at the Queen Elizabeth Hospital Birmingham. Radiography. 2020; 26(1):S8-9
  8. Sarkar V, et al. An evaluation of the consistency of shifts reported by three different systems for non-coplanar treatments. Journal of radiosurgery and SBRT 2018;5 (4):323-330.
  9. Wiant D, et al. Direct comparison between surface imaging and orthogonal radiographic imaging for SRS localization in phantom. Journal of Applied Clinical Medical Physics; 2019; 20 (1): 137-144
  10. Menyhart G. SGRT for Breath Hold SBRT: A Measured Response. SGRT Annual Meeting, Atlanta 2016
  11. Lawson J. Surface Guided Radiation Therapy (SGRT) in SRS and SBRT. Advances in Accuracy and Elevating Patient Experience, Sydney 2019

References for Value-Based Care Flyer (Nov 2020)

  1. Herron E, et al. Surface guided radiation therapy as a replacement for patient marks in treatment of breast cancer. Int J Radiat Oncol Biol Phys. 2018; 102 (3):e492-e493
  2. 50% reduced treatment block times (Northside Cancer Institute, Atlanta, GA); 20 minutes to 10 minutes. Data on file.
  3. From a global reporting database. Data analyzed by Vision RT from SAFRON database. https://www.iaea.org/resources/rpop/resources/databases-and-learning-systems/safron

References for SimRT (Website Page)

  1. Impact of SimRT on DIBH Rescan Rate – University Hospital Birmingham, UK: Audit data from clinic.

1016-0537 AlignRT SRS / SBRT Pull-up Banner

  1. Lau S et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol (2017) 132:307–312
  2. Pan H, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery 2012;71 (4):844-851.
  3. Pham NL, et al. Frameless, real-time, surface imaging-guided radiosurgery: Update on clinical outcomes for brain metastases. Translational Cancer Research 2014;3 (4):351-357.
  4. Paravati et al. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia, Translational Cancer Research, 3, 4, 333-337, August, 2014.
  5. Baker et al. Trigeminal Rhizotomy Performed with Modern Image-guided Linac: Case Report, Cureus, 5(9), 139, 2013
  6. Wen N, et al. Technical note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 2016;43 (5):2527.
  7. Peng et al. Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys. 2010 Oct;37(10):5421-33.
  8. Cerviño et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012 Jan-Mar;2(1):54-62.
  9. Lau et al. Single-Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Neurosurgery. 2015 Aug;77(2):233-40;
  10. Li et al. Clinical experience with two frameless stereotactic radiosurgery (fSRS) systems using optical surface imaging for motion monitoring. J Appl Clin Med Phys. 2015 Jul 8;16(4):5416.
  11. Li et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011 Jul;38(7):3981-94.
  12. Li et al. Optical Surface Imaging for Online Rotation Correction and Real‐Time Motion Monitoring with Threshold Gating for Frameless Cranial Stereotactic Radiosurgery, Med. Phys., Volume 38, 3711, 2011
  13. Mancosu et al. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016 Summer;41(2):173-9
  14. Pan et al. Frameless, real-time, surface imaging-guided radiosurgery: clinical outcomes for brain metastases. Neurosurgery. 2012 Oct;71(4):844-51.
  15. Pham et al. Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases. Trans. Cancer Res, 3, 4, 351-357, August, 2014.
  16. Wen et al. Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys. 2015 Jul 8;16(4):5313.
  17. Wen et al. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys. 2016 May;43(5):2527,
  18. Wiersma et al. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013 Nov;40(11):111712.
  19. Cerviño et al. Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol. 2010 Apr 7;55(7):1863-73
  20. Heinzerling JH, et al. Use of 3d optical surface mapping for quantification of interfraction set up error and intrafraction motion during stereotactic body radiation therapy treatments of the lung and abdomen. International Journal of Radiation Oncology • Biology • Physics 2017;99 (2):E670.

ESTRO Evening Reception 2024 - Accuracy and Efficiency with SGRT display

1 Rayk Nachtigall presentation at SGRT Community Meeting 2023 https://sgrt.org/video-library/patient-movement-and-millimetre-accurate-positioning-with-sgrt/

2 Shangdong Province Hospital case study: AlignRT and DIBH for reduced radiation toxicity https://www.visionrt.com/wp-content/uploads/2023/07/VisionRT_Case-Study_Shandong-Cancer-Hospital-Institute_LT_v10.pdf

3 Marlon van den Broek presentation at SGRT Community Meeting 2023 https://sgrt.org/video-library/introducing-setup-of-srs-treatment-of-patients-with-open-face-mask-using-sgrt-and-head-adjuster-in-our-clinic/

4 Pham et al paper: Frameless, real-time, surface imaging-guided radiosurgery: update on clinical outcomes for brain metastases (Translational Cancer Research, Vol. 3, No. 4, August 28, 2014) https://tcr.amegroups.org/article/view/2947/3457

5 Edward Clouser Jr. presentation at SGRT Community Meeting 2023 https://sgrt.org/video-library/surface-image-monitoring-for-automated-stereotactic-radiosurgery-treatment-efficiency-accuracy-and-patient-comfort/

6 Vania Batista presentation at SGRT Community Meeting 2022 https://sgrt.org/video-library/sgrt-use-in-cardiac-ablation-treatments/

7 Nagore Garcia Apellaniz presentation at SGRT Community Meeting 2022 N/A

8 Giantsoudi PhD, et al. Tattoo Free Set-up for Breast Cancer Patients Receiving Regional Nodal Irradiation, Practical Radiation Oncology (2022) https://doi.org/10.1016/j.prro.2022.08.001

9 Mueller et al. Accuracy and Efficiency of Patient Setup Using Surface Imaging versus Skin Tattoos for Accelerated Partial Breast Irradiation (2023) https://doi.org/10.1016/j.adro.2023.101183

10 Sauer, TO. et al. Prerequisites for the clinical implementation of a markerless SGRT-only workflow for the treatment of breast cancer patients. Strahlenther Onkol 199, 22–29 (2023) https://doi.org/10.1007/s00066-022-01966-7

11 Wei et al. Quantifying the impact of optical surface guidance in the treatment of cancers of the head and neck. J Appl Clin Med Phys, 21 (2020), pp. 73-82 https://doi.org/10.1002/acm2.12867

12 Hickey et al. Surface Guided Radiotherapy (SGRT) vs Varian RPM for deep inspiration breath-hold (DIBH) breast treatments (2018-2020) N/A

13 Kang, S., Jin, H., Chang, J.H. et al. Evaluation of initial patient setup methods for breast cancer between surface-guided radiation therapy and laser alignment based on skin marking in the Halcyon system. Radiat Oncol 18, 60 (2023) https://doi.org/10.1186/s13014-023-02250-3

14 Flores-Martinez et al. Assessment of the use of different imaging and delivery techniques for cranial treatments on the halcyon linac. J Appl Clin Med Phys (2020) 21:53–61 https://doi.org/10.1002/acm2.12772

15 Amy Shaw presentation at SGRT Community Meeting 2022 https://sgrt.org/video-library/measuring-and-improving-radiotherapy-delivery-efficiency-with-sgrt-implementation/

16 Gunther Rucka presentation at SGRT Community Meeting 2023 https://sgrt.org/video-library/surface-imaging-for-srs-insights-from-st-louis-radiotherapy-center/

17 Luke Rock presentation at SGRT Netherlands Community Meeting 2023 N/A

18 SSM Health St. Mary’s case study: Clinical Excellence with Vision RT https://www.visionrt.com/wp-content/uploads/2023/01/VisionRT_Case-Study_SSM-Health-St-Marys-Hospital_LT_v5.pdf

19 UCSD case study: Utilizing AlignRT for a Better Patient Experience https://www.visionrt.com/wp-content/uploads/2023/05/UCSD-.pdf

20 Kira Oliver presentation at SGRT Community Meeting 2022 https://sgrt.org/video-library/the-role-of-sgrt-in-error-detection-in-a-regional-radiation-therapy-practice/